Carbon Monoxide Interacts with Auxin and Nitric Oxide to Cope with Iron Deficiency in Arabidopsis

نویسندگان

  • Liming Yang
  • Jianhui Ji
  • Hongliang Wang
  • Karen R. Harris-Shultz
  • Elsayed F. Abd_Allah
  • Yuming Luo
  • Yanlong Guan
  • Xiangyang Hu
چکیده

To clarify the roles of carbon monoxide (CO), nitric oxide (NO), and auxin in the plant response to iron deficiency (-Fe), and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO deficient), noa1 (NO deficient), nia1/nia2 (NO deficient), yuc1 (auxin over-accumulation), and cue1 (NO over-accumulation) to -Fe stress. We also generated a HY1 over-expression line (named HY1-OX) in which CO is over-produced compared to wild-type. We found that the suppression of CO and NO generation using various inhibitors enhanced the sensitivity of wild-type plants to Fe depletion. Similarly, the hy1, noa1, and nia1/nia2 mutants were more sensitive to Fe deficiency. By contrast, the yuc1, cue1, and HY1-OX lines were less sensitive to Fe depletion. The hy1 mutant with low CO content exhibited no induced expression of the Fe uptake-related genes FIT1 and FRO2 as compared to wild-type plants. On the other hand, the treatments of exogenous CO and NO enhanced Fe uptake. Likewise, cue1 and HY1-OX lines with increased endogenous content of NO and CO, respectively, also exhibited enhanced Fe uptake and increased expression of bHLH transcriptional factor FIT1as compared to wild-type plants. Furthermore, we found that CO affected auxin accumulation and transport in the root tip by altering the PIN1 and PIN2 proteins distribution that control lateral root structure under -Fe stress. Our results demonstrated the integration of CO, NO, and auxin signaling to cope with Fe deficiency in Arabidopsis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.

In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompani...

متن کامل

Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants.

Previous studies have identified that auxins acts upstream of nitric oxide in regulating iron deficiency responses in roots, but the upstream signaling molecule of auxins remains unknown. In this study, we showed that Fe deficiency increased sucrose (Suc) level in roots of Arabidopsis (Arabidopsis thaliana). Exogenous application of Suc further stimulated Fe deficiency-induced ferric-chelate-re...

متن کامل

Effect of foliar spray of sodium nitroprusside (nitric oxide donor) on growth parameters, total chlorophyll content, iron content and antioxidant enzymes activity in cucumber (Cucumis sativus L.) under iron deficiency stress

In this study, the effect of foliar spray of sodium nitroprusside (100 μM) as a nitric oxide donor on iron deficiency stress alleviation in cucumber plant was investigated. The results indicated that iron deficiency stress reduced growth parameters, total chlorophyll content, Fe content and antioxidant enzymes activity of catalase, ascorbate peroxidase as well as guaiacol peroxidase. Sodium nit...

متن کامل

The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

Fe deficiency (-Fe) is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO) are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA) and NO levels in roots, and the responses of root growth in rice ...

متن کامل

Low levels of nitric oxide and carbon monoxide in 1-antitrypsin deficiency

Machado, Roberto F., James K. Stoller, Daniel Laskowski, Shuo Zheng, Joseph A. Lupica, Raed A. Dweik, and Serpil C. Erzurum. Low levels of nitric oxide and carbon monoxide in 1-antitrypsin deficiency. J Appl Physiol 93: 2038–2043, 2002. First published August 30, 2002; 10.1152/japplphysiol.00659.2002.—Quantitations of exhaled nitric oxide (NO) and carbon monoxide (CO) have been proposed as noni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016